terça-feira, 20 de abril de 2010

Frações

O símbolo significa a:b, sendo a e b números naturais e b diferente de zero.

Chamamos:

seta.gif (248 bytes) de fração;

seta.gif (248 bytes) a de numerador;

seta.gif (248 bytes) b de denominador.

Se a é múltiplo de b, então é um número natural.

Veja um exemplo:

A fração fr2.gif (135 bytes) é igual a 8:2. Neste caso, 8 é o numerador e 2 é o denominador. Efetuando a divisão de 8 por 2, obtemos o quociente 4. Assim, fr2.gif (135 bytes) é um número natural e 8 é múltiplo de 2.

Durante muito tempo, os números naturais foram os únicos conhecidos e usados pelos homens. Depois começaram a surgir questões que não poderiam ser resolvidas com números naturais. Então surgiu o conceito de número fracionário.



Critérios de divisibilidade

Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios de divisibilidade.

  • Divisibilidade por 2

Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par.

Exemplos:
1) 5040 é divisível por 2, pois termina em 0.
2) 237 não é divisível por 2, pois não é um número par.

  • Divisibilidade por 3

Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3.

Exemplo:
234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3.

  • Divisibilidade por 4

Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4.

Exemplo:
1800 é divisível por 4, pois termina em 00.
4116 é divisível por 4, pois 16 é divisível por 4.
1324 é divisível por 4, pois 24 é divisível por 4.
3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4.

  • Divisibilidade por 5

Um número natural é divisível por 5 quando ele termina em 0 ou 5.

Exemplos:
1) 55 é divisível por 5, pois termina em 5.
2) 90 é divisível por 5, pois termina em 0.
3) 87 não é divisível por 5, pois não termina em 0 nem em 5.

  • Divisibilidade por 6

Um número é divisível por 6 quando é divisível por 2 e por 3.

Exemplos:
1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6).
2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12).
3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3).
4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2).

  • Divisibilidade por 8

Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8.

Exemplos:
1) 7000 é divisível por 8, pois termina em 000.
2) 56104 é divisível por 8, pois 104 é divisível por 8.
3) 61112 é divisível por 8, pois 112 é divisível por 8.
4) 78164 não é divisível por 8, pois 164 não é divisível por 8.

  • Divisibilidade por 9

Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9.

Exemplo:
2871 é divisível por 9, pois a soma de seus algarismos é igual a 2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por 9.

  • Divisibilidade por 10

Um número natural é divisível por 10 quando ele termina em 0.

Exemplos:
1) 4150 é divisível por 10, pois termina em 0.
2) 2106 não é divisível por 10, pois não termina em 0.

  • Divisibilidade por 11

Um número é divisível por 11 quando a diferença entre as somas dos valores absolutos dos algarismos de ordem ímpar e a dos de ordem par é divisível por 11.

O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª ordem, o das centenas de 3ª ordem, e assim sucessivamente.

Exemplos:
1) 87549
Si (soma das ordens ímpares) = 9+5+8 = 22
Sp (soma das ordens pares) = 4+7 = 11
Si-Sp = 22-11 = 11
Como 11 é divisível por 11, então o número 87549 é divisível por 11.

2) 439087
Si (soma das ordens ímpares) = 7+0+3 = 10
Sp (soma das ordens pares) = 8+9+4 = 21
Si-Sp = 10-21
Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: 10+11 = 21. Então temos a subtração 21-21 = 0.
Como zero é divisível por 11, o número 439087 é divisível por 11.

  • Divisibilidade por 12

Um número é divisível por 12 quando é divisível por 3 e por 4.

Exemplos:
1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20).
2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4).
3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).

  • Divisibilidade por 15

Um número é divisível por 15 quando é divisível por 3 e por 5.

Exemplos:
1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5).
2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5).
3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3).

  • Divisibilidade por 25

Um número é divisível por 25 quando os dois algarismos finais forem 00, 25, 50 ou 75.

Exemplos:
200, 525, 850 e 975 são divisíveis por 25.



Equações de primeiro grau

(com uma variável)

Introdução

Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos:

2x + 8 = 0

5x - 4 = 6x + 8

3a - b - c = 0

Não são equações:

4 + 8 = 7 + 5 (Não é uma sentença aberta)

x - 5 <>(Não é igualdade)

(não é sentença aberta, nem igualdade)

A equação geral do primeiro grau:

ax+b = 0

onde a e b são números conhecidos e a > 0, se resolve de maneira simples: subtraindo b dos dois lados, obtemos:

ax = -b

dividindo agora por a (dos dois lados), temos:

Considera a equação 2x - 8 = 3x -10

A letra é a incógnita da equação. A palavra incógnita significa " desconhecida".

Na equação acima a incógnita é x; tudo que antecede o sinal da igualdade denomina-se 1º membro, e o que sucede, 2º membro.

Qualquer parcela, do 1º ou do 2º membro, é um termo da equação.

Equação do 1º grau na incógnita x é toda equação que pode ser escrita na forma ax=b, sendo a e b números racionais, com a diferente de zero.



Pares ordenados

Muitas vezes, para localizar um ponto num plano, utilizamos dois números racionais, numa certa ordem.

Denominamos esses números de par ordenado. Exemplos:

Assim:

Indicamos por (x, y) o par ordenado formado pelos elementos x e y, onde x é o 1º elemento e y é o 2º elemento.

  • Observações

  1. De um modo geral, sendo x e y dois números racionais quaisquer, temos: . Exemplos

2. Dois pares ordenados (x, y) e (r, s) são iguais somente se x = r e y = s.

Representação gráfica de um Par Ordenado

Podemos representar um par ordenado através de um ponto em um plano.

Esse ponto é chamado de imagem do par ordenado.

Coordenadas Cartesianas

Os números do par ordenados são chamados coordenadas cartesianas. Exemplos:

A (3, 5) ==> 3 e 5 são as coordenadas do ponto A.

Denominamos de abscissa o 1º número do par ordenado, e ordenada, o 2º número desse par. Assim:

Plano Cartesiano

Representamos um par ordenado em um plano cartesiano.

Esse plano é formado por duas retas, x e y, perpendiculares entre si.

A reta horizontal é o eixo das abscissas (eixo x).

A reta vertical é o eixo das ordenadas (eixo y).

O ponto comum dessas duas retas é denominado

origem, que corresponde ao par ordenado (0, 0).

Localização de um Ponto

Para localizar um ponto num plano cartesiano, utilizamos a seqüência prática:

  • O 1º número do par ordenado deve ser localizado no eixo das abscissas.

  • O 2º número do par ordenado deve ser localizado no eixo das ordenadas.

  • No encontro das perpendiculares aos eixos x e y, por esses pontos, determinamos o ponto procurado. Exemplo:

  • Localize o ponto (4, 3).

Produto Cartesiano

Sejam os conjuntos A = {1, 2, 3} e B = {3, 4}.

Com auxílio do diagrama de flechas ao lado formaremos o conjunto de todos os pares ordenados em que o 1º elemento pertença ao conjunto A e o 2º pertença ao conjunto B.

Assim , obtemos o conjunto: {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

Esse conjunto é denominado produto cartesiano de A por B, e é indicado por:

Logo:

Dados dois conjuntos A e B, não-vazios, denominamos produtos cartesiano A x B o conjunto de todos os pares ordenados (x, y) onde



Inequações de primeiro grau

Introdução

Denominamos inequação toda sentença matemática aberta por uma desigualdade.

As inequações do 1º grau com uma variável podem ser escritas numa das seguintes formas:

, , , , como a e b reais . Exemplos:

Representação gráfica de uma inequação do 1º grau com duas variáveis

Método prático

  • Substituímos a desigualdade por uma igualdade.

  • Traçamos a reta no plano cartesiano.

  • Escolhemos um ponto auxiliar, de preferência o ponto (0, 0) e verificamos se o mesmo satisfaz ou não a desigualdade inicial.

Em caso positivo, a solução da inequação corresponde ao semiplano ao qual pertence o ponto auxiliar.

Em caso negativo, a solução da inequação corresponde ao semiplano oposto aquele ao qual pertence o ponto auxiliar. Exemplos:

  • Representamos graficamente a inequação

Tabela

x

y

(x, y)

0 4 (0, 4)
2 0 (2, 0)

Substituindo o ponto auxiliar (0, 0) na inequação

Verificamos:

(Afirmativa positiva, o ponto auxiliar satisfaz a inequação)

A solução da inequação corresponde ao semiplano ao qual pertence o ponto auxiliar (0, 0).


Radiciação

Potenciação de Radicais

Observando as potencias, temos que:

De modo geral, para se elevar um radical a um dado expoente, basta elevar o radicando àquele expoente. Exemplos:

Divisão de Radicais

Segundo as propriedades dos radicais, temos que:

De um modo geral, na divisão de radicais de mesmo índice, mantemos o índice e dividimos os radicais: Exemplos:

: =

Se os radicais forem diferentes, devemos reduzi-los ao mesmo índice e depois efetue a operação. Exemplos:







Razões - Introdução

Vamos considerar um carro de corrida com 4m de comprimento e um kart com 2m de comprimento. Para compararmos as medidas dos carros, basta dividir o comprimento de um deles pelo outro. Assim:

razao1.gif (930 bytes) (o tamanho do carro de corrida é duas vezes o tamanho do kart).

Podemos afirmar também que o kart tem a metade razao3.gif (959 bytes) do comprimento do carro de corrida.
A comparação entre dois números racionais, através de uma divisão, chama-se razão.

A razão razao2.gif (879 bytes) pode também ser representada por 1:2 e significa que cada metro do kart corresponde a 2m do carro de corrida.

Denominamos de razão entre dois números a e b (b diferente de zero)
o quociente
razao4.gif (886 bytes) ou a:b.

A palavra razão, vem do latim ratio, e significa "divisão". Como no exemplo anterior, são diversas as situações em que utilizamos o conceito de razão. Exemplos:

  • Dos 1200 inscritos num concurso, passaram 240 candidatos.
    Razão dos candidatos aprovados nesse concurso:

razao5.gif (716 bytes) (de cada 5 candidatos inscritos, 1 foi aprovado).

  • Para cada 100 convidados, 75 eram mulheres.
    Razão entre o número de mulheres e o número de convidados:

razao6.gif (525 bytes) (de cada 4 convidados, 3 eram mulheres).


Observações:

1) A razão entre dois números racionais pode ser apresentada de três formas. Exemplo:
Razão entre 1 e 4: 1:4 ou
razao7.gif (134 bytes) ou 0,25.

2) A razão entre dois números racionais pode ser expressa com sinal negativo, desde que seus termos tenham sinais contrários. Exemplos:

A razão entre 1 e -8 é razao8.gif (144 bytes).

A razão entre razao9.gif (198 bytes) é razao10.gif (272 bytes).






Proporções - Introdução

Rogerião e Claudinho passeiam com seus cachorros. Rogerião pesa 120kg, e seu cão, 40kg. Claudinho, por sua vez, pesa 48kg, e seu cão, 16kg.

Observe a razão entre o peso dos dois rapazes:

propor1.gif (468 bytes)

Observe, agora, a razão entre o peso dos cachorros:

propor2.gif (467 bytes)

Verificamos que as duas razões são iguais. Nesse caso, podemos afirmar que a igualdade propor3.gif (270 bytes) é uma proporção. Assim:

Proporção é uma igualdade entre duas razões.






Algarismos Romanos

A numeração romana é um sistema de numeração que usa letras maiúsculas, as quais são atribuídos valores. Os algarismos romanos são usados principalmente:

  • Nos números de capítulos uma obra.
  • Nas cenas de um teatro.
  • Nos nomes de papas e imperadores.
  • Na designação de congressos, olimpíadas, assembléias...

Regras

A numeração romana utiliza sete letras maiúsculas, que correspondem aos seguintes valores:

Letras Valores
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Exemplos: XVI = 16; LXVI = 66.

Se à direita de uma cifra romana se escreve outra igual ou menor, o valor desta se soma ao valor da anterior.

Exemplos:
VI = 6
XXI = 21
LXVII = 67

A letra "I" colocada diante da "V" ou de "X", subtrai uma unidade; a letra "X", precedendo a letra "L" ou a "C", lhes subtrai dez unidades e a letra "C", diante da "D" ou da "M", lhes subtrai cem unidades.

Exemplos:
IV = 4
IX = 9
XL = 40
XC = 90
CD = 400
CM = 900

Em nenhum número se pode pôr uma mesma letra mais de três vezes seguidas. Antigamente se via as vezes a letra "I" ou a "X" até quatro vezes seguidas.
Exemplos:
XIII = 13
XIV = 14
XXXIII = 33
XXXIV = 34

A letra "V", "L" e a "D" não podem se duplicar porque outras letras ("X", "C", "M") representam seu valor duplicado.

Exemplos:
X = 10
C = 100
M = 1.000

Se entre duas cifras quaisquer existe outra menor, o valor desta pertencerá a letra seguinte a ela.

Exemplos:
XIX = 19
LIV = 54
CXXIX = 129

O valor dos números romanos quando multiplicados por mil, colocam-se barras horizontais em cima dos mesmos.

Exemplos:

milhao.gif (1012 bytes)

Tabela de números romanos











pessoal por hooje é isso amanha e depoiis: coloca mais coisas que vcs queiram mas tbm para isso deem ideias e comentem nessa e nas outras postagens! beiijos


OBS:o assunto de amanha é Grandezas proporcionais e ....

Nenhum comentário:

Postar um comentário